If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+4c-84=4
We move all terms to the left:
2c^2+4c-84-(4)=0
We add all the numbers together, and all the variables
2c^2+4c-88=0
a = 2; b = 4; c = -88;
Δ = b2-4ac
Δ = 42-4·2·(-88)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{5}}{2*2}=\frac{-4-12\sqrt{5}}{4} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{5}}{2*2}=\frac{-4+12\sqrt{5}}{4} $
| (9x-40=7x-37=3x+23 | | 2c^2+4c-84=2 | | (x^2−3 | | (x^2−3 | | 7x+-10=11 | | x.x/5=1.5 | | 100=x+72 | | /(x+5)+2=0 | | 0.05x+0.03(5000-x)=0.04*5000 | | r-76/7=2 | | 16x-16+80+2x=180 | | 15(x+4)=40 | | 2(v-67)=40 | | 50=x+72 | | P=6.3p= | | x2+-2x=20 | | 3y-5=60 | | 16x-16+80+2x=360 | | 15+3y =6 | | 2(v−67)=40 | | -1.4=2.8c-7 | | 4q+20=68 | | -(x-8)=-3(x-5) | | 46=2s-18 | | −2= 15a | | -x/6+(-5.1=-2.3 | | p=1500(1.15) | | v+31/6=9 | | 54=6+4u | | M+14=28-m | | 0.7(10x+14)=4.5(0.2x+5) | | 3z-3+2z+1=180 |